Existence and convergence of best proximity points in G-metric spaces

¹V. Vairaperumal ²J.Maria Joseph

^{1,2} P.G. and Research Department of Mathematics, St.Joseph's College (Autonomous), Tiruchirappalli - 620 002, India.

7 March, 2017

Outline

O Preliminaries

Abstract

Abstract

In this paper, we introduce the new concept of cyclic G-contraction mapping and also we prove existence and convergence of best proximity point theorems in G-metric spaces.

• Fixed point Theory plays vital role in Mathematical analysis.

• Best approximations and best proximity points are considered as an extension of fixed point theory.

- Fixed point Theory plays vital role in Mathematical analysis.
- Best approximations and best proximity points are considered as an extension of fixed point theory.
- In 1922, Stefan Banach has come up with beautiful theorem known as banach contraction theorem.

- Fixed point Theory plays vital role in Mathematical analysis.
- Best approximations and best proximity points are considered as an extension of fixed point theory.
- In 1922, Stefan Banach has come up with beautiful theorem known as banach contraction theorem.
- This theorem laid foundation for all fixed point theorems. Eldred and Veeramani proved existence and convergence of best proximity points in 2006.

- Fixed point Theory plays vital role in Mathematical analysis.
- Best approximations and best proximity points are considered as an extension of fixed point theory.
- In 1922, Stefan Banach has come up with beautiful theorem known as banach contraction theorem.
- This theorem laid foundation for all fixed point theorems. Eldred and Veeramani proved existence and convergence of best proximity points in 2006.
- Then, many authors presented best proximity point results for different types of mappings.

- Fixed point Theory plays vital role in Mathematical analysis.
- Best approximations and best proximity points are considered as an extension of fixed point theory.
- In 1922, Stefan Banach has come up with beautiful theorem known as banach contraction theorem.
- This theorem laid foundation for all fixed point theorems. Eldred and Veeramani proved existence and convergence of best proximity points in 2006.
- Then, many authors presented best proximity point results for different types of mappings.
- In this section, we provide some basic definitions.

- Fixed point Theory plays vital role in Mathematical analysis.
- Best approximations and best proximity points are considered as an extension of fixed point theory.
- In 1922, Stefan Banach has come up with beautiful theorem known as banach contraction theorem.
- This theorem laid foundation for all fixed point theorems. Eldred and Veeramani proved existence and convergence of best proximity points in 2006.
- Then, many authors presented best proximity point results for different types of mappings.
- In this section, we provide some basic definitions.

Define

$$dist(A, B) = \inf \{ d(a, b) : a \in A, b \in B \}$$

$$A_0 = \{ a \in A : d(a, b) = dist(A, B) \text{ for some } b \in B \}$$

$$B_0 = \{ b \in B : d(a, b) = dist(A, B) \text{ for some } a \in A \}$$

Define

$$dist(A, B) = \inf \{ d(a, b) : a \in A, b \in B \}$$

$$A_0 = \{ a \in A : d(a, b) = dist(A, B) \text{ for some } b \in B \}$$

$$B_0 = \{ b \in B : d(a, b) = dist(A, B) \text{ for some } a \in A \}$$

G-metric space

Let X be a non-empty set, and let $G : X \times X \times X \to \mathbb{R}^+$ be a function to satisfy the following axioms:

1) G(x, y, z) = 0, iff x = y = z,

G-metric space

Let X be a non-empty set, and let $G : X \times X \times X \to \mathbb{R}^+$ be a function to satisfy the following axioms:

1)
$$G(x, y, z) = 0$$
, iff $x = y = z$,

2) 0 < G(x, x, y) for all $x, y \in X$ with $x \neq y$,

G-metric space

Let X be a non-empty set, and let $G : X \times X \times X \to \mathbb{R}^+$ be a function to satisfy the following axioms:

1)
$$G(x, y, z) = 0$$
, iff $x = y = z$,

2)
$$0 < G(x, x, y)$$
 for all $x, y \in X$ with $x \neq y$,

3) $G(x, x, y) \leq G(x, y, z)$, for all $x, y, z \in X$ with $z \neq y$,

G-metric space

Let X be a non-empty set, and let $G : X \times X \times X \to \mathbb{R}^+$ be a function to satisfy the following axioms:

1)
$$G(x, y, z) = 0$$
, iff $x = y = z$,

2)
$$0 < G(x, x, y)$$
 for all $x, y \in X$ with $x \neq y$,

3)
$$G(x, x, y) \leq G(x, y, z)$$
, for all $x, y, z \in X$ with $z \neq y$,

4) $G(x, y, z) = G(x, z, y) = G(y, z, x) = \cdots$ (symmetry in all three variables),

G-metric space

Let X be a non-empty set, and let $G : X \times X \times X \to \mathbb{R}^+$ be a function to satisfy the following axioms:

1)
$$G(x, y, z) = 0$$
, iff $x = y = z$,
2) $0 < G(x, x, y)$ for all $x, y \in X$ with $x \neq y$,
3) $G(x, x, y) \leq G(x, y, z)$, for all $x, y, z \in X$ with $z \neq y$,
4) $G(x, y, z) = G(x, z, y) = G(y, z, x) = \cdots$ (symmetry in all three variables),

5) $G(x, y, z) \leq G(x, a, a) + G(a, y, z)$, for all $x, y, z, a \in X$ (rectangle inequality)

G-metric space

Let X be a non-empty set, and let $G : X \times X \times X \to \mathbb{R}^+$ be a function to satisfy the following axioms:

1)
$$G(x, y, z) = 0$$
, iff $x = y = z$,
2) $0 < G(x, x, y)$ for all $x, y \in X$ with $x \neq y$,
3) $G(x, x, y) \leq G(x, y, z)$, for all $x, y, z \in X$ with $z \neq y$,
4) $G(x, y, z) = G(x, z, y) = G(y, z, x) = \cdots$ (symmetry in all three variables),

5) $G(x, y, z) \leq G(x, a, a) + G(a, y, z)$, for all $x, y, z, a \in X$ (rectangle inequality)

Then the function G is called a generalized metric, or, more specifically, a G- metric on X, and the pair (X, G) is called a G- metric space.

G-metric space

Let X be a non-empty set, and let $G : X \times X \times X \to \mathbb{R}^+$ be a function to satisfy the following axioms:

1)
$$G(x, y, z) = 0$$
, iff $x = y = z$,
2) $0 < G(x, x, y)$ for all $x, y \in X$ with $x \neq y$,
3) $G(x, x, y) \leq G(x, y, z)$, for all $x, y, z \in X$ with $z \neq y$,
4) $G(x, y, z) = G(x, z, y) = G(y, z, x) = \cdots$ (symmetry in all three variables),

5) $G(x, y, z) \leq G(x, a, a) + G(a, y, z)$, for all $x, y, z, a \in X$ (rectangle inequality)

Then the function G is called a generalized metric, or, more specifically, a G- metric on X, and the pair (X, G) is called a G- metric space.

Definition

Let (X, G) and (X', G') be G-metric spaces and let $f : (X, G) \rightarrow (X', G')$ be function, then f is said to be G-continuous at a point $a \in X$; if given $\epsilon > 0$, there exists $\delta > 0$ such that $x, y \in X$; $G(a, x, y) < \delta$ implies that

 $G'(f(a), f(x), f(y)) < \epsilon.$

A function f is G-continuous on X if and only if it is G-continuous at all $a \in X$.

Proposition

Let (X, G) and (X', G') be G-metric spaces, then a function $f: X \to X'$ is G-continuous at a point $x \in X$ if and only if it is G-sequentially continuous at x, that is, whenever $\{x_n\}$ is G-convergent to x, $\{f(x_n)\}$ is G-convergent to f(x).

Definition

Let (X, G) be a *G*-metric space, let $\{x_n\}$ be a sequence of points of *X*; therefore, it is said that $\{x_n\}$ is *G*-convergent to *x* if

$$\lim_{n,n\to\infty}G(x,x_n,x_m)=0;$$

that is, for any $\epsilon > 0$, there exists $N \in \mathbb{N}$ such that $G(x, x_n, x_m) < \epsilon$ for all $n, m \ge N$. One call x, the limit of the sequence and write $x_n \to x$ or $\lim x_n = x$.

Proposition

Let (X, G) be a *G*-metric space. Then the following are equivalent: (1) $\{x_n\}$ is *G*-convergent to *x*

13 / 27

Proposition

Let (X, G) be a G-metric space. Then the following are equivalent:

- $\{x_n\}$ is *G*-convergent to *x*
- 2 $G(x_n, x, x) \rightarrow 0$, as $n \rightarrow \infty$

Proposition

Let (X, G) be a G-metric space. Then the following are equivalent:

- $\{x_n\}$ is *G*-convergent to *x*
- 2 $G(x_n, x, x) \rightarrow 0$, as $n \rightarrow \infty$

Proposition

Let (X, G) be a G-metric space. Then the following are equivalent:

- $\{x_n\}$ is *G*-convergent to *x*
- 2 $G(x_n, x, x) \rightarrow 0$, as $n \rightarrow \infty$

• $G(x_m, x_n, x) \rightarrow 0$, as $n \rightarrow \infty$

Proposition

Let (X, G) be a G-metric space. Then the following are equivalent:

• $\{x_n\}$ is *G*-convergent to *x*

2
$$G(x_n, x, x) \rightarrow 0$$
, as $n \rightarrow \infty$

•
$$G(x_m, x_n, x)
ightarrow 0$$
, as $n
ightarrow \infty$

Definition

Let (X, G) be a G-metric space. A sequence $\{x_n\}$ is called a G-Cauchy if, for each $\epsilon > 0$ there exists $N \in \mathbb{N}$ such that $G(x_m, x_n, x_l) < \epsilon$, for all $n, m, l \ge N$; that is, $G(x_m, x_n, x_l) \to 0$ as $n, m, l \to \infty$.

Proposition

Let (X, G) be a G-metric space. Then the following are equivalent;

- The sequence $\{x_n\}$ is G-Cauchy
- ② For every *ϵ* > 0, there exists *N* ∈ N such that *G*(*x*, *x_n*, *x_m*) < *ϵ* for all *n*, *m* ≥ *N*

Definition

A G-metric space (X, G) is G-complete if every G-Cauchy sequence in (X, G) is G-convergent.

Example

Let (\mathbb{R}, d) be the usual metric space. Define G_a by $G_a(x, y, z) = d(x, y) + d(y, z) + d(x, z)$ for all $x, y, z \in \mathbb{R}$. Then it is clear that (\mathbb{R}, G_a) is a G-metric space.

Best proximity point in G-metric spaces

Let (X, G) be a *G*-metric space and let *A*, *B*, and *C* be non-empty subsets of *X*. A mapping $T : A \cup B \cup C \rightarrow A \cup B \cup C$ is such that $T(A) \subset B, T(B) \subset C$, and $T(C) \subset A$. We call an element $x \in A \cup B \cup C$ a best proximity point (with respect to *T*) if $G(x, Tx, T^2x) = G(A, B, C)$ is satisfied, where $G(A, B, C) = \inf\{G(x, y, z) : x \in A, y \in B, \text{ and } z \in C\}.$

19 / 27

Definition

Let (X, G) be a complete *G*-metric space. Let *A*, *B* and *C* be the nonempty closed subsets of *X*. A mapping $T : A \cup B \cup C \rightarrow A \cup B \cup C$ is said to be cyclic *G*-contraction if $T(A) \subseteq B, T(B) \subseteq C$ and $T(C) \subseteq A$

$$egin{aligned} G(\mathit{Tx},\mathit{Ty},\mathit{Tz}) &\leq a_1 G(x,y,z) + a_2 G(x,\mathit{Tx},\mathit{Ty}) \ &+ a_3 G(y,\mathit{Ty},\mathit{Tz}) \ &+ (1 - (a_1 + a_2 + a_3)) G(\mathit{A},\mathit{B},\mathit{C}) \end{aligned}$$

where $a_i \ge 0, i = 1, 2, 3$ and $a_1 + a_2 + a_3 < 1$, for all $x, \in A, y \in B$ and $z \in C$.

Theorem

Let (X, G) be a complete *G*-metric space. Let A, B and C be three non-empty closed subsets of X. Let $T : A \cup B \cup C \rightarrow A \cup B \cup C$ cyclic *G*-contraction. Then there exists sequence $\{x_n\}$ in X such that $\lim_{n\to\infty} G(x_n, x_{n+1}, x_{n+2}) = G(A, B, C).$

Theorem

Let (X, G) be a *G*-metric space. Let *T* be *G*-contraction mapping. Let $x_0 \in A$ be any element and the sequence $\{x_n\}$ be defined as $Tx_n = x_{n-1}$ for all $n \ge 0$. Then $\lim_{n \to \infty} G(x_n, x_{n+1}, x_{n+2}) = G(A, B, C)$. If $\{x_n\}$ has a convergent subsequence and *T* is continuous on *A*, then subsequence converges to a best proximity point.

References

23 / 27

References I

- Anthony Eldred A, Veeramani. P, "Existence and convergence of best proximity points", J. Math. Anal. Appl. 323 (2006) 1001-1006.
- Dhage B. C, "Generalized metric space and mapping with fixed point", *Bulletin of Calcutta Mathematical Society*, 84 (1992),329-336.
- Dhage B. C, "Generalized metric spaces and topological structure.I", Analele Stiintifice ale Universita A1.I.Cuza din Iasi.Serie Noua.Mathematica, 46(2000),3-24.
- Gahler S, "2-metrics Raume und ihre topologische Sturkktur", *Mathematische Nachrichten*,26(1963),115-148.
- Gahler S. "Zur gometric 2-metric raume", *Revenue Roumaine de Mathematiques Pures et appliquees*, 40(1966),664-669.
- Hsiao C. R, "A property of contractive type mapping in 2-metric space", *Jnanabha*, 16(1986),223-239.

References II

- Maria Joseph J and M.Marudai, "Some fixed theorems in ordered and property P in G-metric spaces", *International J. of Math. Sci & Engg*, 5(2011),229-243.
- Mustafa Z, "A new structure for generalized metric spaces with applications to fixed point theory", Ph.D. thesis, The university of Newcastle, Callaghan, Australia, (2005).
- Mustafa Z and B.Sims, "A new approach to generalized metric spaces", *Journal of Nonlinear and convex Analysis*, 7(2)(2006),289-297.
- Mustafa Z, Obiedat H and Awawdeh F, "Some fixed point theorem for mapping on Complete G-metric spaces", *Fixed Point Theory and Applications*,(2008).
 - Mustafa Z and Sims B, "Fixed Point theorems for contractive mappings in complete G-metric spaces", *Fixed Point Theory and Applications*, (2009).

Time to INTERACT

26 / 27

Thank You